

General Description

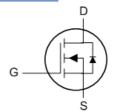
The QN3107M6N is the highest performance trench N-Channel MOSFET with extreme high cell density , which provide excellent RDSON and gate charge for most of the synchronous buck converter applications .

The QN3107M6N meet the RoHS and Green Product requirement with full function reliability approved.

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Green Device Available

Product Summary


BVDSS	RDSON (VGS=10V)	ID (Tc=25°C)		
30V	2.6mΩ	110A		

Applications

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System
- Load Switch

PRPAK 5X6 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	110	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	70	Α
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	22	Α
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	17	Α
I _{DM}	Pulsed Drain Current ²	220	Α
EAS	Single Pulse Avalanche Energy ³	155.1	mJ
I _{AS}	Avalanche Current	55.7	Α
P _D @T _C =25°C	Total Power Dissipation ⁴	50	W
P _D @T _A =25°C	Total Power Dissipation ⁴	2.0	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
T_J	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction-Ambient ¹		62	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-Case ¹		2.5	°C/W

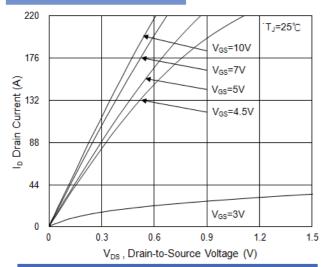
Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.01		V/°C
В	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =30A		2.1	2.6	0
$R_{DS(ON)}$	Static Diain-Source On-Resistance	V _{GS} =4.5V , I _D =15A		2.9	3.8	mΩ
V _{GS(th)}	Gate Threshold Voltage	\/ -\/ -250\	1.2		2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-4.6		mV/°C
	Drain Course Leakers Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	l uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =15A		47.5		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		0.9		Ω
Qg	Total Gate Charge (10V)			31.4		
Q_g	Total Gate Charge (4.5V)	1 45)/)/ 45)/ 1 45		15.1		0
Q _{gs}	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =15A		5.4		nC
Q _{gd}	Gate-Drain Charge			5.2		
T _{d(on)}	Turn-On Delay Time			10.8		
Tr	Rise Time	V_{DD} =15V , V_{GS} =10V , R_{G} =3.3 Ω		44.6		
T _{d(off)}	Turn-Off Delay Time	I _D =15A		25.3		ns
T _f	Fall Time			6.1		
C _{iss}	Input Capacitance			1917		
C _{oss}	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		1086		pF
C _{rss}	Reverse Transfer Capacitance			47		

Guaranteed Avalanche Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy⁵	V _{DD} =25V , L=0.1mH , I _{AS} = 35A	61.25			mJ

Diode Characteristics


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current ^{1,6}	V =V =0V Force Current			110	Α
I _{SM}	Pulsed Source Current ^{2,6}	V _G =V _D =0V , Force Current			220	Α
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V
trr	Reverse Recovery Time	IE-45A dI/dt-400A/wa T25°C		73.6		nS
Qrr	Reverse Recovery Charge	lF=15A , dl/dt=100A/μs , Tյ=25°C		62.3		nC

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$
- 3.The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The Min. value is 100% EAS tested guarantee.
- 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

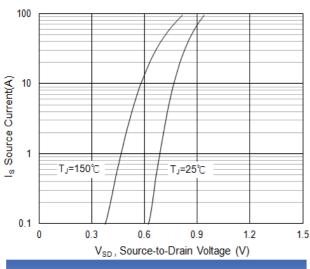


Fig.3 Forward Characteristics of Reverse

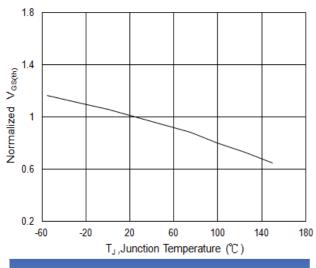


Fig.5 Normalized V_{GS(th)} vs. T_J

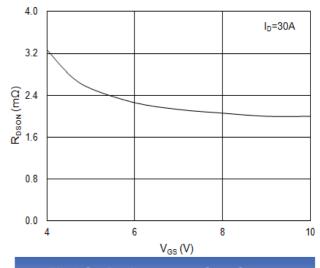


Fig.2 On-Resistance vs. Gate-Source



Fig.4 Gate-Charge Characteristics

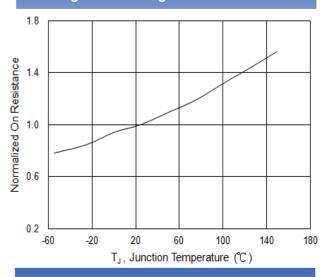
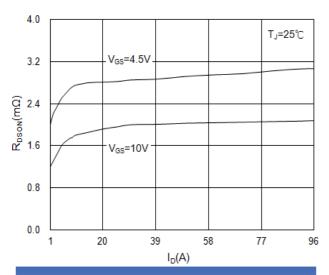



Fig.6 Normalized R_{DSON} vs. T_J

Fig.7 Drain-Source On-State Resistance

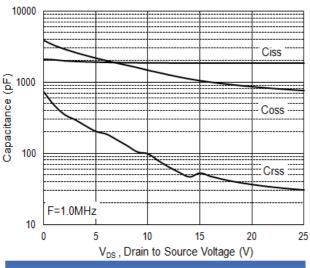
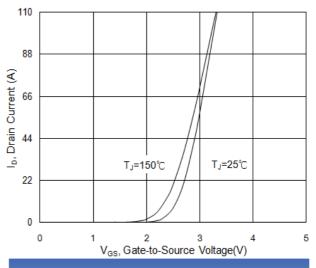
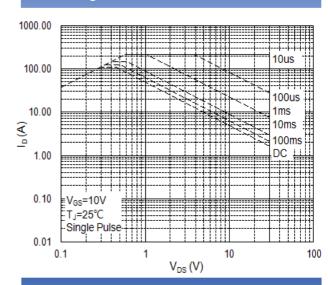
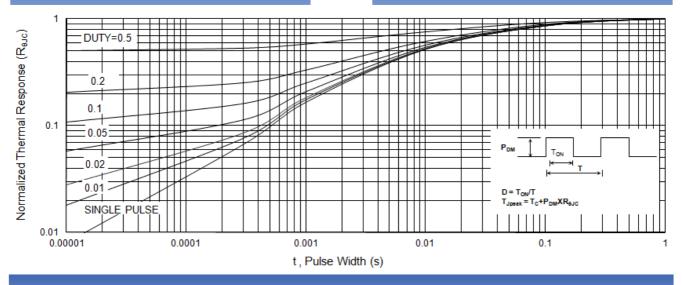
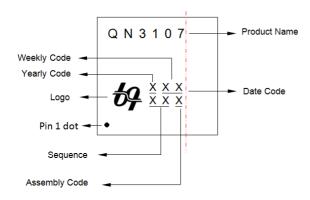
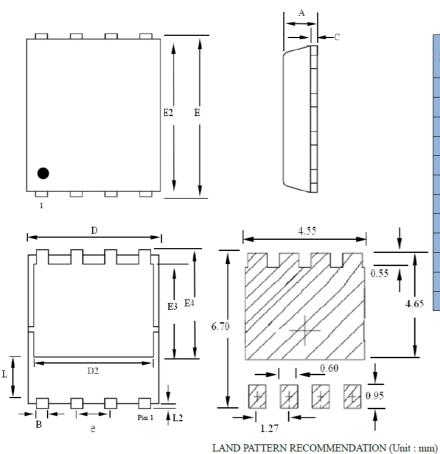



Fig.9 Capacitance

Fig.8 Transfer Characteristics


Fig.10 Safe Operating Area


Fig.11 Transient Thermal Impedance

Top Marking

PRPAK5X6 Package Outline Drawing

SYMBOLS	Millimeters			
STWIDOLS	MIN	NOM	MAX	
A	0.90	1.00	1.20	
В	0.33		0.51	
С	0.20		0.34	
D	4.50		5.10	
D2	3.60	-	4.22	
Е	5.90	1	6.13	
E2	5.50		5.84	
E3	3.18	-	4.30	
E4	3.69		4.39	
L	1.10		1.39	
L2	0.02		0.33	
e		1.27		

Note:

- 1. ALL DIMENSIONS LISTED ON THE DRAWING MEETING JEDEC STANDARD.
- 2. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
- 3. RECOMMENDED LAND PATTERN DESIGN IS ONLY FOR REFERENCE